A Process-Oriented Approach to Waste Stream Analysis in Building Deconstruction Projects

Matan Mayer
Assistant Professor, IE University School of Architecture and Design, Spain
ISIE/ISSST, Chicago, June 2017
A Process-Oriented Approach to Waste Stream Analysis in Building Deconstruction Projects

Introduction

Methodology

Application

Discussion
Existing analysis metrics

- Cost
- Speed of mass removal
- Total diversion rate
Introduction

Methodology

Application

Discussion

Diversion Dynamics: A Process-Based Approach to Deconstruction Analysis

Mechanized

Pace-oriented

Mostly unselective

Manual

Recovery-oriented

Selective
Demolition: Approx. 3 days

Deconstruction: Approx. 18 days

1600 SqF

Dantata et al., 2005
Introduction

Methodology

Application

Discussion

Diversion Dynamics: A Process-Based Approach to Deconstruction Analysis
Methodological workflow:

1. Define sequence of deconstruction operations
Methodological workflow:

1. Define sequence of deconstruction operations
2. Overview of tools used
Methodological workflow:

1. Define sequence of deconstruction operations
2. Overview of tools used
3. Duration of on-site activity
Methodological workflow:

1. Define sequence of deconstruction operations
2. Overview of tools used
3. Duration of on-site activity
4. Connection types
Methodological workflow:

1. Define sequence of deconstruction operations
2. Overview of tools used
3. Duration of on-site activity
4. Connection types
5. Total diversion rate calculation
Methodological workflow:

1. Define sequence of deconstruction operations
2. Overview of tools used
3. Duration of on-site activity
4. Connection types
5. Total diversion rate calculation
6. Diversion rate breakdown based on material, connection, and tool types
Methodological workflow:

1. Define sequence of deconstruction operations
2. Overview of tools used
3. Duration of on-site activity
4. Connection types
5. Total diversion rate calculation
6. Diversion rate breakdown based on material, connection, and tool types
Case study
The Snyder Veterinary Research Facility, University of Georgia
Analysis: Deconstruction sequence
Analysis: Connection types
Analysis: Material types, diversion rates
<table>
<thead>
<tr>
<th>Component</th>
<th>Qty.</th>
<th>Material group</th>
<th>Notes</th>
<th>Reuse (lb)</th>
<th>Recycling (lb)</th>
<th>Waste (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siding</td>
<td>NA</td>
<td>Metals</td>
<td>Aluminum (painted)</td>
<td></td>
<td></td>
<td>1342.4</td>
</tr>
<tr>
<td>Roof panels</td>
<td>NA</td>
<td>Metals</td>
<td>Aluminum (uncoated)</td>
<td></td>
<td></td>
<td>2013.6</td>
</tr>
<tr>
<td>Shutter tracks</td>
<td>14</td>
<td>Metals</td>
<td>Steel pipe</td>
<td></td>
<td></td>
<td>217</td>
</tr>
<tr>
<td>Window L brackets</td>
<td>28</td>
<td>Metals</td>
<td>Steel</td>
<td></td>
<td></td>
<td>841</td>
</tr>
<tr>
<td>Other L brackets</td>
<td>60</td>
<td>Metals</td>
<td>Steel</td>
<td></td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>Bracket connection</td>
<td>28</td>
<td>Metals</td>
<td>Steel</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Screws</td>
<td>NA</td>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Posts and beams</td>
<td>NA</td>
<td>Lumber</td>
<td>2X4/2x6/2x12/4x6/6x6</td>
<td></td>
<td></td>
<td>33640</td>
</tr>
<tr>
<td>Posts and beams</td>
<td>NA</td>
<td>Lumber</td>
<td>Too short for reuse</td>
<td></td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>40' Trusses</td>
<td>13</td>
<td>Lumber</td>
<td>Sold for reuse</td>
<td></td>
<td></td>
<td>4420</td>
</tr>
<tr>
<td>40' Trusses</td>
<td>2</td>
<td>Lumber</td>
<td></td>
<td></td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>24' Trusses</td>
<td>3</td>
<td>Lumber</td>
<td>Sold for reuse</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>24' Trusses</td>
<td>1</td>
<td>Lumber</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Plywood sheathing</td>
<td>28</td>
<td>Lumber</td>
<td>Window subassembly</td>
<td></td>
<td></td>
<td>308</td>
</tr>
<tr>
<td>Window jambs</td>
<td>14</td>
<td>Lumber</td>
<td></td>
<td></td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>Footings</td>
<td>5</td>
<td>Concrete</td>
<td>6x24x93 Inch</td>
<td></td>
<td></td>
<td>5812.128</td>
</tr>
<tr>
<td>Footings</td>
<td>32</td>
<td>Concrete</td>
<td>6x24x65 Inch</td>
<td></td>
<td></td>
<td>25998.336</td>
</tr>
<tr>
<td>Footings</td>
<td>4</td>
<td>Concrete</td>
<td>6x18x65 Inch</td>
<td></td>
<td></td>
<td>2437.344</td>
</tr>
<tr>
<td>Skylights</td>
<td>14</td>
<td>Composites</td>
<td>GFRP (fiberglass)</td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Insulation</td>
<td>NA</td>
<td>Composites</td>
<td>0.75" Styrofoam</td>
<td></td>
<td></td>
<td>8841.3</td>
</tr>
<tr>
<td>Total (lb)</td>
<td></td>
<td></td>
<td></td>
<td>74371.8</td>
<td>3356.0</td>
<td>10324.3</td>
</tr>
<tr>
<td>Total (%)</td>
<td></td>
<td></td>
<td></td>
<td>84.46</td>
<td>3.82</td>
<td>11.72</td>
</tr>
</tbody>
</table>
Findings
Discussion: insights
Time-related
Economic
Technological
Sequence-based
Connection type-related

Riverdale*
- Reuse: 53%
- Recycling: 23%
- Waste: 24%

Snyder
- Reuse: 84%
- Recycling: 12%
- Waste: 4%

*NAHB Research Center, 1997
Acknowledgement:
Chris McDowell, University of Georgia Material Reuse Program manager, supervisor of the Snyder deconstruction project.

Published findings:
Matan Mayer, Diversion Dynamics: A Process-Based Approach to Deconstruction Analysis, ACSA Annual Meeting Proceedings, 2017

mmayer@faculty.ie.edu